Senin, 22 November 2010

Bagaimana Mekanisme Kerja PLTN ?

Selain menghancurkan kota Hiroshima dan Nagasaki, nuklir juga telah membawa kenangan buruk bagi warga Eropa semenjak tragedi meledaknya pembangkit listrik di Chernobil (Ukraina) bertenaga nuklir pada 26 April 1986. Tujuh tahun sebelumnya, tepatnya pada 28 Maret 1979, pembangkit listrik tenaga nuklir di Three Mile Island (Pensylvania, Amerika Serikat) telah meledak dan memberikan kenangan buruk bagi warga Amerika Serikat khususnya dan dunia umumnya.

Yang membuat ngeri bukan pada kehancuran akibat ledakan, tetapi apa yang terjadi setelah ledakan: makhluk hidup mengalami mutasi. Ada bayi yang bermata satu, berkaki tiga, berjari tidak normal, dan semua yang aneh-aneh lainnya. Wilayah tempat terjadi kecelakaan harus disterilkan (tidak boleh dimasukki) untuk waktu beratus-ratus tahun lamanya.

Kenapa sebegitunya? Inilah yang dalam fisika disebut peristiwa “peluruhan” (decay). Ada sejumlah zat di alam ini yang tidak stabil, disebut zat radioaktif, dan untuk mencapai kestabilan dia berubah bentuk dengan cara memancarkan sejumlah massanya ke lingkungan (peristiwa ini disebut meluruh). Zat yang dipancarkan dikategorikan dalam tiga jenis sinar: sinar alpha, sinar beta, dan sinar gamma. Ketiga sinar ini dapat berinteraksi dengan materi lain dan dalam dosis tertentu dapat mengionkan materi lain tersebut. Misalnya selembar kertas yang awalnya tidak bermuatan dapat menjadi bermuatan setelah dikenai sinar radioaktif pada dosis tertentu. Hasil interaksi akan menjadi lebih mengerikan ketika sinar radioaktif ini berinteraksi dengan materi hidup seperti jaringan kulit dan DNA tubuh kita.

Nah, berikut ini hal yang menarik: bagaimana mengubah energi sebanyak itu menjadi listrik dalam sebuah PLTN? 

Jawabannya cukup mencengangkan, atau mungkin mengecewakan bagi sebagian kita: energi sejumlah itu dipakai untuk mendidihkan segentong air sehingga menjadi uap. Uap itu kemudian dialirkan lewat pipa-pipa yang kemudian dapat menggerakkan turbin-turbin. Di belakang turbin ada generator yang bekerja seperti sebuah dinamo raksasa yang bertugas mengubah energi gerak mekanik menjadi energi listrik. (Berbeda dengan motor yang mengubah energi listrik menjadi energi gerak mekanik, atau enjin yang mengubah energi hasil pembakaran menjadi energi gerak mekanik). Proses awal yang “very high technology” ternyata diakhiri oleh “very old-style conventional technology

Secara sederhana, skematik tersebut dapat dijelaskan sebagai berikut. Reaksi fisi berantai terjadi di reaktor (C), dengan bahan bakar  U-235 dalam bentuk batangan (kira-kira sepanjang 2,5 cm). Batangan U-235 dikontrol oleh batang pengontrol (B). Operator menaikturunkan batang pengontrol ini untuk mengontrol kecepatan reaksi berantai. Batang turun berarti semakin cepat reaksi terjadi, begitu juga sebaliknya.
Energi yang dihasilkan oleh reaksi fisi dibawa dalam bentuk panas oleh fluida khusus ke tabung air (D). Panas ini mendidihkan air yang uapnya dibawa oleh pipa untuk menggerakkan turbin (H). Di belakang turbin ada generator (G) yang mengubah energi gerak mekanik menjadi listrik.
Uap air yang telah menggerakkan turbin kehilangan panasnya dan berubah kembali menjadi air. Untuk mempercepat proses pendinginan, air dingin dari menara air (J) disalurkan lewat pipa (I). Air yang telah dingin dipompa ke (D). Begitu seterusnya.


Mekanisme turbin dan generator yang mengubah energi mekanik menjadi energi listrik adalah pembahasan tersendiri.
Jadi sesungguhnya cuma ada tiga jenis pembangkit listrik: bertenaga air (turbin digerakkan oleh air), bertenaga uap (digerakkan oleh uap air), dan bertenaga angin (turbin digerakkan oleh air). Permasalahannya adalah: dari mana mendapatkan air, uap, dan angin tersebut.

untuk cara kerja silakan CLICK.



sumber: http://friends.smansakra.sch.id/blogs/entry/Prinsip-Kerja-Pembangkit-Listrik-Tenaga-Nuklir

Tidak ada komentar:

Posting Komentar